Table 2. Transition pressure (P_{tr} , kb) for the Fm3m \rightleftharpoons Pm3m phase change in the potassium and rubidium halides at 25°C | Salt | Bridgman
1945[25] | Daniels. <i>et al.</i> 1966[31] | Kennedy
and LaMori,
1962[18] | Knof
and Maisch.
1963[26] | Larson, 1965 [29] | Piermarini
and Weir,
1962[4] | Pistorius, 1964[11, 12] | Pistorius
and Snyman.
1964[13] | This work | Average
Value | |------|----------------------|---------------------------------|------------------------------------|---------------------------------|-------------------|------------------------------------|-------------------------|--------------------------------------|------------------------------|------------------| | | | | | | | | | | None | | | KF | | | | | | 35 | | 14.6 ± 1.3 | observed | | | KC1 | 19.7 | | 18.28 ± 0.21 | | 20.0 | | $19 \cdot 27 \pm 0.08$ | | 19.55 ± 0.13 | 19.4 ± 0.3 | | KBr | 18.0 | | 17.88 ± 0.06 | | 18.5 | | 17.43 ± 0.07 | | 17.99 ± 0.28 | 18.0 ± 0.2 | | KI | 17.8 | | 17.48 ± 0.24 | | | | 17.34 ± 0.05 | | $18 \cdot 27 \pm 0 \cdot 19$ | 17.7 ± 0.3 | | RbF | | | | 33 | | 12 | | 6.1 | 34.47 ± 0.38 | 33.8 ± 0.8 | | RbC1 | 4.90 | | | | | | 5.28 | | 5.68 ± 0.14 | 5.32 ± 0.24 | | RbBr | 4.50 | | | | | | 4.20 ± 0.2 | | 4.92 ± 0.06 | 4.57 ± 0.35 | | RbI | 3.96 | 3.54 | | | | | 3.59 ± 0.16 | | 3.68 ± 0.05 | 3.69 ± 0.11 | Table 3. Transition volume ($-\Delta V_{tr}$, cm³/mole) for the Fm3m \rightarrow Pm3m phase change in the potassium and rubidium halides at 25°C | Salt | Adams
and Davis,
1962[8] | Bridgman,
1945[25] | Genshaft <i>et al.</i> . 1967[30] | Jacobs.
1938[6] | Jamison,
1957[7] | Nagasaki
and
Minomura,
1964[9] | Pistorius
and Snyman,
1964[13] | Weir and
Piermarini,
1964[5] | This work | Average value | |------------|--------------------------------|-----------------------|-----------------------------------|--------------------|---------------------|---|--------------------------------------|------------------------------------|-------------------------------|-------------------------------| | KF | | | | | | | 1.0 | 2.49 | None Obs. | | | KCI | | 4.20 | | | | 3.85 | | 6.85 | 4.11 ± 0.10 | 4.05 ± 0.17 | | KBr | | 4.55 | | | | | | 8.35 | $4 \cdot 17 \pm 0 \cdot 11$ | 4.36 ± 0.19 | | KI | | 4.50 | | | 4.50 | | | 11.8 | $4\!\cdot\!41\pm0\!\cdot\!15$ | $4\!\cdot\!47\pm0\!\cdot\!13$ | | RbF | | | | | | | | 3.70 | 1.83 ± 0.29 | | | RbCl | 6.55 | 6.00 | 6.30 | | | | | 5.76 | 6.95 ± 0.11 | 6.30 ± 0.35 | | RbBr | | 6.55 | | | | | | 6.60 | 7.43 ± 0.18 | 6.86 ± 0.39 | | RbI | 9.65 | 7.50 | | 7.9 | | | | 8.26 | $8 \cdot 10 \pm 0 \cdot 10$ | 8.28 ± 0.31 | Fig. 4. $\Delta V(\text{Fm3m} \rightarrow \text{Pm3m})$ vs. T for the rubidium halides. perature data by use of equation (2). The pressure-temperature coordinates of the Fm3m ≈ liquid ≈ Pm3m triple point for these salts were determined from the intersection of the melting curves of the Fm3m and Pm3m phases at the Fm3m ≈ Pm3m phase boundary. The melting curves of the Fm3m and Pm3m phases were drawn through the data points of Clark[22] and of Pistorius [23] in order that the intersection of these two curves would fall on the Fm3m ≈ Pm3m phase boundry obtained in this work. Triple point coordinates obtained for the salts KCl, KBr and KI are shown in Fig. 1; coordinates for the rubidium halides are shown in Fig. 2. These triple point P-T coordinates are compared with the P-T coordinates given by Clark [22] and by Pistorius [23] in Table 4. ## Potassium halides Potassium fluoride was examined at pressures up to 45 kb at approx. 100° intervals from room temperature up to 800°C. However, we fail to find the phase transition reported by Weir and Piermarini[5] and by Pistorius and Snyman[13]. Pistorius *et al.* found the volume change of this transition to be small, i.e. 0·5 per cent. The sensitivity of the method used here is more than adequate to detect a phase transition with such a small